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Abstract--It is shown that the equations governing the conjugate free convection boundary-layer flow on 
a vertical plale can be made dimensionless so as to involve only the Prandtl number. An efficient finite- 
difference scheme is developed to solve these equations and results are given for Pr = 0.72, 0.733 and 7.0, 
respectively. It is seen that an asymptotic expansion gives reliable results even at moderate values of x 

(dimensionless distance along the plate). 

1. INTRODUCTION 

The heat transfer characteristics of convective bound- 
ary-layer flows are strongly influenced by the form of 
the thermal boundary conditions imposed. It is usual 
to prescribe either the wall temperature or the wall 
heat flux, and a considerable amount of work has been 
done in understanding these flows over a wide range 
of wall conditions and fluid properties. Much of this 
work is reviewed in a recent book by Gebhart et al. 
[1]. There is anothe:F class of wall conditions in which 
there is an interaction between the convective fluid 
and conduction through the bounding wall. These are 
usually referred to as conjugate heat transfer prob- 
lems, and much of the earlier work on this topic is 
also reviewed by Martynenko and Sokovishin [2]. 

More specifically, we assume that we have a vertical 
solid plate, at one side of which the temperature is 
maintained at a corLstant value To, while on the other 
side a natural con~ection boundary-layer flow is set 
up in fluid with constant ambient temperature T~ 
(assuming To > T~). The temperature on the con- 
vective surface is then determined by a balance 
between steady conduction through the plate and con- 
vective heat transfer from the plate. 

This problem has been considered previously by 
Pozzi and Lupo [31f, and by these authors for forced 
convection [4]. The method used by Pozzi and Lupo 
[3, 4] to solve the governing equations was by series 
expansion. This method has a serious drawback in 
that it is somewhat cumbersome to implement, with- 
out any guaranteed accuracy or even convergence and 
gives results which are unreliable even at moderate 
distances from the leading edge. Here, we modify the 
finite-difference scheme used successfully by the pre- 
sent authors for a wide range of convective boundary- 

layer flow calculations, see, for example, refs. [5-7]. 
This scheme was found to work easily and gave a 
simpler and more efficient method for obtaining a 
solution for a given value of the Prandtl number. 

2. MATHEMATICAL FORMULATION 

Consider the steady natural convection boundary- 
layer flow from a vertical plate of length I and thick- 
ness b. The outside surface of the plate is maintained 
at the constant temperature To, above the ambient 
temperature T~ of the convecting fluid. The physical 
situation is shown in Fig. 1. 

On the assumption (consistent with boundary-layer 
theory) that axial conduction can be neglected, the 
equation for the temperature in the plate, T~, is given 
by 

8-'Ts 
- - = 0 ,  O <~ x <~ l, - b  <~ y <<, O. (1) 
83~ 2 

Applying the condition that Ts = To on y = - b  
gives 

Tw (-~) -- To _ 
rs(X,y) = Tw(~)+ b Y' (2) 

where Tw(2) is the temperature at the solid-fluid inter- 
face, and will be determined by the solution of the free 
convection problem. It should be noted that the same 
assumption that the axial heat conduction through 
the flat plate is insignificant has also been made by 
several authors, e.g. refs. [8-10]. The equations gov- 
erning this convective flow are, on making the usual 
Boussinesq approximation, 

8a 8~ 
a7 + b7 = o (3a) 
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NOMENCLATURE 

thickness of the plate 
acceleration due to gravity 
thermal conductivity of the plate 
thermal conductivity of the convecting 
fluid 
length of the plate 
Prandtl number 
temperature in the convecting fluid 
temperature in the plate 
temperature (constant) at the outer 
edge of the plate 
ambient temperature (constant) 
temperature at the interface between 
the plate and the convecting fluid 
applied temperature differences, 
A T =  To-T~, 
velocity in the x direction 
(dimensionless as u) 
velocity in the y direction 
(dimensionless as v) 

co-ordinate along the plate 
(dimensionless as x) 

p co-ordinate normal to the plate 
(dimensionless as y). 

Greek symbols 
fl coefficient of thermal expansion 
0 dimensionless temperature, 

0 = (T-- T~o)/AT 
0~ dimensionless plate temperature, 

0w = (Tw- T~)/AT 
v kinematic viscosity 
~b (dimensionless) stream function. 

Superscripts 
' differentiation with respect to 

- dimensional variables. 

Subscripts 
w wall condition 
so ambient condition. 

8~ Of~ 8~ 
a ~ + g ~ = g f l ( T - T ~ ) + V ~ y  z (3b) 

~T 8T v 82T 
- , ( 3 c )  

a~x +g Op Pr 0p 2 

where t7 and ~ are the velocity components in the ~Z 

To 

1 

rs 

v 

T w  (i) 
. /  

G 

= 
-b  o y 

Fig. 1. The physical model and co-ordinate system. 

and y directions, respectively, T is the temperature of 
the convecting fluid and v and Pr are the kinematic 
viscosity and Prandtl number, respectively. The 
boundary conditions to be applied are that 

a ~ 0 ,  T ~ T ~  a s p ~ s o  (4a) 

and, through continuity of temperature and heat flux 
at the solid-fluid boundary, that 

T =  Tw(2), ksSTs 8T = k r ~  a t ? = 0  (4b) O- 
together with the no-slip condition that 

a = 0 = 0  a t p = 0 .  (4c) 

Here k~ and kf are the thermal conductivities of the 
solid and the fluid, respectively. Using equation (2), 
condition (4b) gives 

~T ks ( T - T 0 )  on• = 0. (5) T =  Tw, c3~ = bk~ 

To make equation (3) and boundary condition (4a, 
c) and (5) dimensionless, we use the imposed tem- 
perature scale AT = T 0 -  T~, as in ref. [3]. However, 
for a length scale we use a convective length scale 
(gflAT/vZ)(bkf/ks) 4. This then leads us to write 

gflAT (bkf'~Zu, v~.vks 
T-T~o = ATO, ~= 

v \ k s }  v' 

] 72 ~ k s ~  4 ks 
X = g ~ k f f ~ f f j X ,  y = ~ffp. (6) 

On using equation (6) and defining a dimensionless 
stream function ~0 in the usual way, equations (3) 
become 



Conjugate free convection on a vertical surface 1529 

- 0 + - -  ( 7 a )  Oy Oy Ox Ox Oy 2 Oy 3 

d~ 00 0~ 00 1 O:O 
(7b) 

Oy Ox Ox Oy - Pr Oy 2 

with boundary conditions (4a, c) and (5) giving 

0~ 
- - - -*0 ,  0 ~ 0  asy--*oo (7c) 0y 

o0 oo 
0=o,  7yy=O, Uyy=O-I ony=O. (7d) 

We note that the system of equations and boundary 
conditions (7) involves only the single dimensionless 
parameter Pr and that the length of the plate / does 
not appear in the non-dimensionalization (6). l then 
enters the solution of our system in that range of 
interest is now 

0 ~; x <~ gf lAT\bkf]  " (8) 

However, the parabolic nature of the boundary- 
layer equations means that we require only one solu- 
tion of equation (7) (for a given Pr), which can be 
obtained for all x, with the range of applicability for 
a given physical problem then given by equation (8). 

3. SOLUTION 

A solution of equation (7), valid for small x, can be 
obtained by writing 

I[I = X4/SF(x,q),  0 = xl/SH(x, rl), q = y/x  1/5. 

(9a) 

Equation (7d) then gives 

OH 
- - =  l+x l /SH on q = 0  (9b) 
0q 

and a solution of the transformed equations can be 
obtained by expanding in powers of x 1/5. This is not 
pursued further here as it was the method used by 
Pozzi and Lupo [13]. They obtained a solution to a 
large number of terms in this expansion and then 
extrapolated these results to large x. We need note 
only the form of transformation (9a), which will be 
required for the finite-difference solution described 
below. 

A solution, valid for x large, can also be obtained, 
for which we require the transformation 

~,=x3/4f(x ,O,  O=O(~,x), ~ = y / x  I/4. (10) 

It is worth mentioning that equation (10) is the 
transformation appropriate for the problem of free 
convection from a vertical fiat plate with uniform 
surface temperature [11, 12]. Using (10), equations 

and boundary conditions (7) become 

(lla) 

1 o:o 3 oo /ofoo ofoo) 
Pr O~z + 4 f - ~ =  x ~  ff-x Ox ~ )  (l ib) 

0 f  -- 1/4 00 f = 0 ,  ~ = 0 ,  O - - l = x  ~ o n ~ = 0  

(llc) 

~f  
-J--*0, 0 ~ 0  as ~ o e .  (lld) 0¢ 

Equation (1 lc) suggests looking for a solution by 
expanding 

f ( x ,  ~) = f 0 ( 0  + x-1/4fl (() 

+x-'/%(0 +x-3/"f3(0 +... 

O(x, 0 = Oo (0  + x- ' /"o,  (0 

Af-X--I/202(~)"~-X-3/403(~)-~-... (12)  

At leading order, the equations satisfied by (f0, 00) 
are those for a uniform plate temperature, the solution 
of which is well documented [1, 11, 12] (and depends 
on Pr). At 0(x-1/4) we obtain the linear system 

f,~,+Ol+3fof,; 3c,,,', + l r , , r  - ~ J o J l  ~JoJ1 = 0  (13a) 

+iOofl +~f oOl 0 ~ t "  1 -t-~JoU 1 = (13b) 

subject to boundary conditions 

f~(O) = 0, fq(O) = 0, 0,(0) = 05(0) 

f ' ~ 0 ,  0 1 ~ 0  as ~ o o ,  (13c) 

where primes denote differentiation with respect of ~. 
Note that the leading order solution appears both in 
equation (13a,b) and in boundary condition (13c), 
and if we just require the wall temperature, i.e. 01 (0), 
this can be obtained directly from equation (130 with- 
out solving equation (12). 

The solution for the higher order terms can be con- 
tinued in this way. However, we find that at 0(x-l), 
the first eigensolution 

fe = (f~--3f0 0o = ~0; (14) 

arises due to the leading edge shift effect [13]. This 
requires the inclusion of term of 0(x-I log x) and an 
indeterminacy in the expansion arises (arbitrary mul- 
tiples of (re, 0e) can be added to the solution at 0(x- 1)). 
Hence the usefulness of asymptotic expansion (12) is 
confined to terms up to 0(x-3/4). The equations have 
to be solved numerically, and we find that the dimen- 
sionless wall temperature Ow(x) - O(x, 0) (related to 
Tw by Tw = AT0w+ T~) is given, for x large, by 
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0w(X) ~ 1 - 0.35683x- 1/4 ..~ 0.12975x- 1/2 

-0.03521x-3/4 + . . .  (15a) 

for Pr = 0.72, and 

Ow(x) ~ 1-0.74551x-J/4 +0.57699x- i..2 

-0.34319x -3/4+. . .  (15b) 

for Pr = 7.0. 
To obtain a solution valid for all x, equations (7) 

were solved numerically. To do this we used the 
method of continuous transformations proposed by 
Hunt and Wilks [14]. This method incorporates an 
initial transformation of variables which reflects the 
form of the solution for both x small and x large. 
Following ref. [14] and using equations (9a) and (10), 
the transformation 

~, = 44(1 +{5)-,!20q~({, V) 

0 = ¢(1 +~5)- 'G(~,  Y) 

Y = y ¢  ' (1+~5) -'/2°, ¢ = x  '/5 (16) 

is suggested. Note that equation (16) reduces to equa- 
tion (9a) for small x and reduces to equation (10) 
when x is large. Using equation (16) equations (7) 
become 

031# / '16+ 15~5\ ~72q~ 
OY 3 + G +  

1 ( 6 +  5~s~((~(/}~ 2 
rat 

(a~b a2q9 #q~ 024J~ (17a) 
- 5 \ E l  a~-¢ a~ oYV 

1 82G 1 [16+15~5'~ 8G 1 1 G&b_ 

_ _~ (8~b 8G 8q5 ~ )  (17b) 
5 kaY a~ a~ 

subject to the boundary conditions that 

a¢ 
~ = o ,  ~ = o  

8G 
~-~=(1-t-~s)~/2°~G-(l+~S) ~/a on Y = 0  

- - ~ 0 ,  G ~ 0  as Y~oo .  (17c) 
0Y 

The dimensionless wall temperature, 0w, and the 
dimensionless skin friction at the wall, ~w = 
(Su/@)y_o, are given by 

0w = ~(1 + ~ ' ) - ' G ( ~ , 0 )  (18a) 

02 5 -3/20 t~ r~ = ~2(1 +4  ) ~77.~ (~,0). (18b) 
dy ~ 

A finite-difference scheme was derived from equa- 
tions (17) along the lines described in refs. [5-7]. 
Derivatives in the ~-direction were differenced and all 
other terms averaged over the step from ~ = ¢~ to 

= ~j+A(.  This resulted in a pair of coupled non- 
linear ordinary differential equations, which were then 
written in difference form. 

This followed closely the method used previously 
[5-7], except that more care had to be taken to build 
the boundary condition on G on Y = 0 into the finite- 
difference scheme. To do this we applied equation 
(17b) on Y = 0, which gave (in difference form) 

U1 - 2U0 + U_ i = 0, (19a) 

where U0 = G ( ~ , 0 ) + G ( ~ I + A ~ , 0 )  and U±~ = G(~, 
+ A Y) + G(~ + A¢, + A Y). Boundary condition (17c) 
was then differenced to give 

u , = u,-(2~,+A~) 1+ 32 / Uo 

+2h(1 + (2~1 +A~)5~ 1'4 j .  (19b) 

This expression for U_ ~ was then substituted into 
equation (19a) which formed the first equation in the 
difference form of equation (I 7b). 

All of this results in two sets of nonlinear algebraic 
equations which were solved iteratively using the 
Newton-Raphson method, taking as an initial esti- 
mate the profile at the previous step in {. At each 
iteration, the algebraic equations were solved using 
Choleski decomposition [15]. The iterations were 
found to converge quickly, taking typically no more 
iterations than in the previous cases treated, where 
either the plate temperature or heat flux were 
prescribed. Hence the modification to the boundary 
conditions given in equation (17c) appears to present 
no further computational problems. In this way an 
efficient numerical algorithm was devised which 
advanced the solution from ~ = 0 up to large values 
of {, using relatively small amounts of computer time 
and storage. 

Finally, a check was made on the error from differ- 
entiating in the ~-direction by covering the step ~ to 
~ +A{ in first one, and then two steps, and insisting 
that the difference between the two solutions at {~ + A{ 
was less than 5.10 -5. A step AY = 0.05 was used for 
the calculations with one outer boundary condition 
applied on Y-= Y~ = 15 for Pr = 0.72 and Y~ = 20 
for Pr = 7.0. 

4. RESULTS AND DISCUSSION 

We start by comparing the results for 0w and rw 
obtained from our finite-difference solution, with 
those obtained from the series expansion given by 
Pozzi and Lupo [3]. The results for Pr = 0.733 are 
shown in Table 1; the coefficients in the series quoted 
in ref. [3] are given to four figures and consequently 
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Table 1. Comparison of values for the dimensionless wall temperature 0w and skin 
friction ~w obtained from the numerical solution and the series solution of Pozzi and 

Lupo [3] for Pr = 0.733 

Ow "Cw 

Present, Present, 
equation (18a) Series [3] equation (18b) Series [3] 

0.1 0.177 0.177 0.014 0.014 
0.2 0.310 0.310 0.051 0.051 
0.3 0.413 0.413 0.105 0.105 
0.4 0.493 0.493 0.172 0.172 
0.5 0.557 0.557 0.250 0.250 
0.6 0.608 0.608 0.337 0,337 
0.7 0.651 0.651 0.430 0.430 
0.8 0.686 0.684 0.530 0.530 
0.9 0.715 0.708 0.635 0,635 
1.0 0.741 0.717 0.745 0.741 
1.1 0.762 0.699 0.859 0.829 
1.2 0.781 0.640 0.972 0.817 

the values obtained from summing the series will be 
reliable only to three decimal places. F rom this table 
we can see that values for both the wall temperature 
0w and skin friction Zw obtained by the two methods 
agree (to three decimal places) up to ~ = 0.7 (for 0w) 
and ¢ = 0.9 (for zw) Thereafter the two sets of  results 
increasingly diverge with values for both 0w and zw 
starting to decrease. This is contrary to both the finite- 
difference solution, which shows a monotone increase 
in both 0w and z,,  and to the asymptotic series equa- 
tion (15). Pozzi and Lupo [3] estimated the radius of  
convergence x0 of  their series expansion as x0 ~ 1.16 
(3 "" 1.03) and the results shown in Table 1 appear to 
confirm this prediction. 

Graphs of  the non-dimensional wall temperature 
Ow(X) against x are shown in Fig. 2 (for Pr = 0.72) 

and in Fig. 3 (for Pr = 7.0). Also shown in these 
figures (by the broken lines) are the values of  0w as 
obtained from the asymptotic expansions (15a) and 
(15b), respectively. The asymptotic limit, 0w--* 1 as 
x ~ oo, is also shown (by the dot  lines). F rom these 
figures it appears that the asymptotic expansion for x 
large, gives a better representation for 0w for the smal- 
ler value of  Pr, with the difference between the asymp- 
totic series and the numerically determined values 
even at x = 1, being only 0.5% for Pr = 0.72, whereas, 
this difference is just over 16% for Pr = 7.0 at x = 1. 
Also, the asymptotic limit is approached more quickly 
for the smaller value of  Pr. 

In Fig. 4 we give plots of  Tw(X) against x for 
Pr = 0.72 and Pr = 7.0, respectively. Here we can see 
the x 2/5 singularity near x = 0, with the values for 
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- -  numerical; Fig. 2. The non-dimensional wall temperature 0w plotted against x for Pr = 0.72. 
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0.0 
o o'.s 11o 2'0 

Fig. 3. The non-dimensional wall temperature 0w plotted against x for Pr = 7.0. - -  
- - - equation (15b); - - . - -  0w ~ 1. 

numerical; 

Pr -- 0.72 

1.25- 

1 . 0 0 -  

0.75- 

0.50" 

0.25 

0.00 
0 

x 

Fig. 4. Dimensionless skin friction vw plotted against x for Pr = 0.72 and Pr = 7.0. 

Pr = 0.72 increasing more  rapidly with x than  for 
Pr = 7.0. A more  detailed examinat ion  of  the numeri-  
cal results shows tha t  the m ax i m um  value o f u  a t ta ined 
at  a given value o f x  is greater  for  Pr = 0.72 than  for 
Pr = 7.0. 

Finally, in Figs. 5 and  6 we give tempera ture  profiles 
0 at  various values of  x plot ted against  y for Pr = 0.72 
and  Pr = 7.0. These show the rise in the wall tem- 
pera ture  as x is increased (in line with Figs. 2 and  3) 
and  tha t  the tempera ture  profiles become more  spread 

out  as x is increased, with  this spreading in y being 
greater for Pr = 0.72 t han  for Pr = 7.0. 

5. CONCLUSION 

We have been able to exploit  the parabol ic  na ture  
of  the boundary- layer  equat ions  so as to reduce the 
problem of  calculat ing the heat  t ransfer  and  flow 
characterist ics of  the conjugate  heat  t ransfer  on  a ver- 
tical surface, to the solut ion o f  a set of  equat ions  
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1.0 

0,75 

0.50- 

0.25- 

0.0 ol 
x = 0.0003 

\ 

/ 
0.0o9 Y 

Fig. 5. Temperature profiles 0 plotted against y for Pr = 0.72, at x = 0.0003, 0.009, 0.07, 0.95, 50.4. 

'1.00- 

0.75 ~ 

°°°' I / 
x = O.O01t, 0.116 y 

Fig. 6. Temperature profiles 0 plotted against y for Pr = 7.0, at x = 0.116, 1.28, 13.8, 95.7, 1386. 

dependent  only on  the Prand t l  number .  The range of  
applicabil i ty of  the results for a given physical situ- 
a t ion is then deterrained by equa t ion  (8). Also, we 
have presented an  efficient finite-difference scheme for 
hand l ing  the rad ia t ion  (or Robin)  bounda ry  condi t ion  
(7d), which gives ac~curate results for all values of  x 
wi thout  recourse to previously presented series exten- 
sion methods .  Moreover ,  we have noted  tha t  asymp- 
totic expansions  can be used to give a good rep- 
resenta t ion  of  the heat  t ransfer  characteristics,  even 
at relatively low values of  x. 
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